Covalent modification of reduced flavin mononucleotide in type-2 isopentenyl diphosphate isomerase by active-site-directed inhibitors.
نویسندگان
چکیده
Evidence for an unusual catalysis of protonation/deprotonation by a reduced flavin mononucleotide cofactor is presented for type-2 isopentenyl diphosphate isomerase (IDI-2), which catalyzes isomerization of the two fundamental building blocks of isoprenoid biosynthesis, isopentenyl diphosphate and dimethylallyl diphosphate. The covalent adducts formed between irreversible mechanism-based inhibitors, 3-methylene-4-penten-1-yl diphosphate or 3-oxiranyl-3-buten-1-yl diphosphate, and the flavin cofactor were investigated by X-ray crystallography and UV-visible spectroscopy. Both the crystal structures of IDI-2 binding the flavin-inhibitor adduct and the UV-visible spectra of the adducts indicate that the covalent bond is formed at C4a of flavin rather than at N5, which had been proposed previously. In addition, the high-resolution crystal structures of IDI-2-substrate complexes and the kinetic studies of new mutants confirmed that only the flavin cofactor can catalyze protonation of the substrates and suggest that N5 of flavin is most likely to be involved in proton transfer. These data provide support for a mechanism where the reduced flavin cofactor acts as a general acid/base catalyst and helps stabilize the carbocationic intermediate formed by protonation.
منابع مشابه
New role of flavin as a general acid-base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase.
Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we...
متن کاملType II isopentenyl diphosphate isomerase from Synechocystis sp. strain PCC 6803.
Open reading frame sll1556 in the cyanobacterium Synechocystis sp. strain 6803 encodes a putative type II isopentenyl diphosphate (IPP) isomerase. The His(6)-tagged protein was produced in Escherichia coli and purified by Ni(2+) chromatography. The homotetrameric enzyme required NADPH, flavin mononucleotide, and Mg(2+) for activity; K(m)(IPP) was 52 microM, and k(cat)(IPP) was 0.23 s(-1).
متن کاملConstruction of Functional Monomeric Type 2 Isopentenyl Diphosphate:Dimethylallyl Diphosphate Isomerase.
Type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) in the isoprenoid biosynthetic pathway. The enzyme from Streptomyces pneumoniae (spIDI-2) is a homotetramer in solution with behavior, including a substantial increase in the rate of FMN reduction by NADPH in the presence...
متن کاملIdentification of an Archaeal type II isopentenyl diphosphate isomerase in methanothermobacter thermautotrophicus.
Isopentenyl diphosphate (IPP):dimethylallyl diphosphate isomerase catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks required for biosynthesis of isoprenoid compounds. Two different isomerases have been reported. The type I enzyme, first characterized in the late 1950s, is widely distributed in eukaryota and eubacteria. The type II e...
متن کاملNoncanonical Reactions of Flavoenzymes
Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 51 شماره
صفحات -
تاریخ انتشار 2011